Rechercher dans ce blog

Thursday, July 23, 2020

Six reference-quality genomes reveal evolution of bat adaptations - Nature.com

depolitikblog.blogspot.com
  • 1.

    Teeling, E. C. et al. Bat biology, genomes, and the Bat1K project: to generate chromosome-level genomes for all living bat species. Annu. Rev. Anim. Biosci. 6, 23–46 (2018).

    Google Scholar 

  • 2.

    Simmons, N. B. & Cirranello, A. L. Bat Species of the World: A Taxonomic and Geographic Database, https://batnames.org/ (2020).

  • 3.

    Banerjee, A. et al. Novel insights into immune systems of bats. Front. Immunol. 11, 26 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 4.

    Huang, Z. et al. Longitudinal comparative transcriptomics reveals unique mechanisms underlying extended healthspan in bats. Nat. Ecol. Evol. 3, 1110–1120 (2019).

    Google Scholar 

  • 5.

    Vernes, S. C. & Wilkinson, G. S. Behaviour, biology and evolution of vocal learning in bats. Phil. Trans. R. Soc. Lond. B 375, 20190061 (2020).

    Google Scholar 

  • 6.

    Jones, G., Teeling, E. C. & Rossiter, S. J. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats. Front. Physiol. 4, 117 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 7.

    Teeling, E. C. et al. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307, 580–584 (2005).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • 8.

    Wilkinson, G. S. & Adams, D. M. Recurrent evolution of extreme longevity in bats. Biol. Lett. 15, 20180860 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Nowoshilow, S. et al. The axolotl genome and the evolution of key tissue formation regulators. Nature 554, 50–55 (2018).

    CAS  ADS  Google Scholar 

  • 10.

    Tischler, G. in Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2017) (eds Bartoletti, M. et al.) 103–114 (Springer, 2019).

  • 11.

    Tischler, G. & Myers, E. W. Non hybrid long read consensus using local de Bruijn graph assembly. Preprint at https://www.biorxiv.org/content/10.1101/106252v1 (2017).

  • 12.

    Dong, D. et al. The genomes of two bat species with long constant frequency echolocation calls. Mol. Biol. Evol. 34, 20–34 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Eckalbar, W. L. et al. Transcriptomic and epigenomic characterization of the developing bat wing. Nat. Genet. 48, 528–536 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Parker, J. et al. Genome-wide signatures of convergent evolution in echolocating mammals. Nature 502, 228–231 (2013).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • 15.

    Pavlovich, S. S. et al. The Egyptian Rousette genome reveals unexpected features of bat antiviral immunity. Cell 173, 1098–1110 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Seim, I. et al. Genome analysis reveals insights into physiology and longevity of the Brandt’s bat Myotis brandtii. Nat. Commun. 4, 2212 (2013).

    PubMed  PubMed Central  ADS  Google Scholar 

  • 17.

    Wen, M. et al. Exploring the genome and transcriptome of the cave nectar bat Eonycteris spelaea with PacBio long-read sequencing. Gigascience 7, giy116 (2018).

    Google Scholar 

  • 18.

    Zepeda Mendoza, M. L. et al. Hologenomic adaptations underlying the evolution of sanguivory in the common vampire bat. Nat. Ecol. Evol. 2, 659–668 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Zhang, G. et al. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339, 456–460 (2013).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • 20.

    Bejerano, G. et al. Ultraconserved elements in the human genome. Science 304, 1321–1325 (2004).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • 21.

    Nature Biotechnology Editorial. A reference standard for genome biology. Nat. Biotechnol. 36, 1121 (2018).

    Google Scholar 

  • 22.

    Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).

    CAS  Google Scholar 

  • 23.

    Pace, J. K., II & Feschotte, C. The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res. 17, 422–432 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Foley, N. M., Springer, M. S. & Teeling, E. C. Mammal madness: is the mammal tree of life not yet resolved? Phil. Trans. R. Soc. Lond. B 371, 20150140 (2016).

    Google Scholar 

  • 25.

    Doronina, L. et al. Speciation network in Laurasiatheria: retrophylogenomic signals. Genome Res. 27, 997–1003 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Springer, M. S. & Gatesy, J. An ABBA-BABA test for introgression using retroposon insertion data. Preprint at https://www.biorxiv.org/content/10.1101/709477v1 (2019).

  • 27.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 28.

    Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS  Google Scholar 

  • 29.

    Tarver, J. E. et al. The interrelationships of placental mammals and the limits of phylogenetic inference. Genome Biol. Evol. 8, 330–344 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Springer, M. S. & Gatesy, J. On the importance of homology in the age of phylogenomics. Syst. Biodivers. 16, 210–228 (2018).

    Google Scholar 

  • 31.

    Nishihara, H., Hasegawa, M. & Okada, N. Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. Proc. Natl Acad. Sci. USA 103, 9929–9934 (2006).

    CAS  ADS  Google Scholar 

  • 32.

    Tsagkogeorga, G., Parker, J., Stupka, E., Cotton, J. A. & Rossiter, S. J. Phylogenomic analyses elucidate the evolutionary relationships of bats. Curr. Biol. 23, 2262–2267 (2013).

    CAS  Google Scholar 

  • 33.

    Jermiin, L. S., Poladian, L. & Charleston, M. A. Is the “Big Bang” in animal evolution real? Science 310, 1910–1911 (2005).

    CAS  Google Scholar 

  • 34.

    Philippe, H. et al. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol. 9, e1000602 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Ho, S. Y. & Jermiin, L. Tracing the decay of the historical signal in biological sequence data. Syst. Biol. 53, 623–637 (2004).

    Google Scholar 

  • 36.

    Jermiin, L. S., Catullo, R. A., & Holland B. R. A new phylogenetic protocol: dealing with model misspecification and confirmation bias in molecular phylogenetics. NAR Genom. Bioinf. 2, lqaa041 (2020)

    Google Scholar 

  • 37.

    Chou, J. et al. A comparative study of SVDquartets and other coalescent-based species tree estimation methods. BMC Genomics 16, S2 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 38.

    Smith, M. D. et al. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol. Biol. Evol. 32, 1342–1353 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Pond, S. L., Frost, S. D. & Muse, S. V. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676–679 (2005).

    CAS  Google Scholar 

  • 40.

    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Kantarci, S. et al. Mutations in LRP2, which encodes the multiligand receptor megalin, cause Donnai–Barrow and facio-oculo-acoustico-renal syndromes. Nat. Genet. 39, 957–959 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Tan, J., Prakash, M. D., Kaiserman, D. & Bird, P. I. Absence of SERPINB6A causes sensorineural hearing loss with multiple histopathologies in the mouse inner ear. Am. J. Pathol. 183, 49–59 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Walsh, T. et al. Genomic duplication and overexpression of TJP2/ZO-2 leads to altered expression of apoptosis genes in progressive nonsyndromic hearing loss DFNA51. Am. J. Hum. Genet. 87, 101–109 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Wang, Z. et al. Prenatal development supports a single origin of laryngeal echolocation in bats. Nat. Ecol. Evol. 1, 0021 (2017).

    Google Scholar 

  • 45.

    Gunn, M. D. et al. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt’s lymphoma receptor-1. Nature 391, 799–803 (1998).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • 46.

    Vendelin, J. et al. Downstream target genes of the neuropeptide S-NPSR1 pathway. Hum. Mol. Genet. 15, 2923–2935 (2006).

    CAS  Google Scholar 

  • 47.

    Luong, P. et al. INAVA–ARNO complexes bridge mucosal barrier function with inflammatory signaling. eLife 7, e38539 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Saddawi-Konefka, R. et al. Nrf2 induces IL-17D to mediate tumor and virus surveillance. Cell Rep. 16, 2348–2358 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Barker, B. R., Taxman, D. J. & Ting, J. P. Cross-regulation between the IL-1β/IL-18 processing inflammasome and other inflammatory cytokines. Curr. Opin. Immunol. 23, 591–597 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Flo, T. H. et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432, 917–921 (2004).

    CAS  ADS  Google Scholar 

  • 51.

    Hase, K. et al. Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 462, 226–230 (2009).

    CAS  ADS  Google Scholar 

  • 52.

    Yang, J. et al. The I-TASSER suite: protein structure and function prediction. Nat. Methods 12, 7–8 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Sharma, V. et al. A genomics approach reveals insights into the importance of gene losses for mammalian adaptations. Nat. Commun. 9, 1215 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  • 54.

    Wang, W., Yang, Y., Li, L. & Shi, Y. Synleurin, a novel leucine-rich repeat protein that increases the intensity of pleiotropic cytokine responses. Biochem. Biophys. Res. Commun. 305, 981–988 (2003).

    CAS  Google Scholar 

  • 55.

    Bridgewood, C. et al. IL-36γ has proinflammatory effects on human endothelial cells. Exp. Dermatol. 26, 402–408 (2017).

    CAS  Google Scholar 

  • 56.

    Johnston, A. et al. IL-1F5, -F6, -F8, and -F9: a novel IL-1 family signaling system that is active in psoriasis and promotes keratinocyte antimicrobial peptide expression. J. Immunol. 186, 2613–2622 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Nishida, A. et al. Increased expression of interleukin-36, a member of the interleukin-1 cytokine family, in inflammatory bowel disease. Inflamm. Bowel Dis. 22, 303–314 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 58.

    Hayward, J. A. et al. Differential evolution of antiretroviral restriction factors in pteropid bats as revealed by APOBEC3 gene complexity. Mol. Biol. Evol. 35, 1626–1637 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Münk, C., Willemsen, A. & Bravo, I. G. An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals. BMC Evol. Biol. 12, 71 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 60.

    Roper, N. et al. APOBEC mutagenesis and copy-number alterations are drivers of proteogenomic tumor evolution and heterogeneity in metastatic thoracic tumors. Cell Rep. 26, 2651–2666 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Salter, J. D., Bennett, R. P. & Smith, H. C. The APOBEC protein family: united by structure, divergent in function. Trends Biochem. Sci. 41, 578–594 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Katzourakis, A. & Gifford, R. J. Endogenous viral elements in animal genomes. PLoS Genet. 6, e1001191 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 63.

    Taylor, D. J., Dittmar, K., Ballinger, M. J. & Bruenn, J. A. Evolutionary maintenance of filovirus-like genes in bat genomes. BMC Evol. Biol. 11, 336 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Hayward, A., Grabherr, M. & Jern, P. Broad-scale phylogenomics provides insights into retrovirus–host evolution. Proc. Natl Acad. Sci. USA 110, 20146–20151 (2013).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • 65.

    Skirmuntt, E. C. & Katzourakis, A. The evolution of endogenous retroviral envelope genes in bats and their potential contribution to host biology. Virus Res. 270, 197645 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 66.

    Xu, X., Zhao, H., Gong, Z. & Han, G. Z. Endogenous retroviruses of non-avian/mammalian vertebrates illuminate diversity and deep history of retroviruses. PLoS Pathog. 14, e1007072 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 67.

    Katzourakis, A., Tristem, M., Pybus, O. G. & Gifford, R. J. Discovery and analysis of the first endogenous lentivirus. Proc. Natl Acad. Sci. USA 104, 6261–6265 (2007).

    CAS  ADS  Google Scholar 

  • 68.

    Heimberg, A. M., Sempere, L. F., Moy, V. N., Donoghue, P. C. & Peterson, K. J. MicroRNAs and the advent of vertebrate morphological complexity. Proc. Natl Acad. Sci. USA 105, 2946–2950 (2008).

    CAS  ADS  Google Scholar 

  • 69.

    Moran, Y., Agron, M., Praher, D. & Technau, U. The evolutionary origin of plant and animal microRNAs. Nat. Ecol. Evol. 1, 0027 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 70.

    Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Preprint at https://www.biorxiv.org/content/10.1101/2020.05.22.110833v1 (2020).

  • 71.

    Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 72.

    Gremme, G., Brendel, V., Sparks, M. E. & Kurtz, S. Engineering a software tool for gene structure prediction in higher organisms. Inf. Softw. Technol. 47, 965–978 (2005).

    Google Scholar 

  • 73.

    Aken, B. L. et al. The Ensembl gene annotation system. Database (Oxford) 2016, baw093 (2016).

    Google Scholar 

  • 74.

    Sharma, V. & Hiller, M. Increased alignment sensitivity improves the usage of genome alignments for comparative gene annotation. Nucleic Acids Res. 45, 8369–8377 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 75.

    Kent, W. J., Baertsch, R., Hinrichs, A., Miller, W. & Haussler, D. Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc. Natl Acad. Sci. USA 100, 11484–11489 (2003).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • 76.

    Sharma, V., Schwede, P. & Hiller, M. CESAR 2.0 substantially improves speed and accuracy of comparative gene annotation. Bioinformatics 33, 3985–3987 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 77.

    Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 78.

    Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M. & Stanke, M. BRAKER1: unsupervised RNA-seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32, 767–769 (2016).

    CAS  Google Scholar 

  • 79.

    Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    CAS  Google Scholar 

  • 80.

    Kuo, R. I., Cheng, Y., Smith, J., Archibald, A. L. & Burt, D. W. Illuminating the dark side of the human transcriptome with TAMA Iso-Seq analysis. Preprint at https://www.biorxiv.org/content/10.1101/780015v1 (2019).

  • 81.

    Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 82.

    Platt, R. N., II, Blanco-Berdugo, L. & Ray, D. A. Accurate transposable element annotation is vital when analyzing new genome assemblies. Genome Biol. Evol. 8, 403–410 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 83.

    Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0, http://www.repeatmasker.org (2013–2015)

  • 84.

    Abrusán, G., Grundmann, N., DeMester, L. & Makalowski, W. TEclass—a tool for automated classification of unknown eukaryotic transposable elements. Bioinformatics 25, 1329–1330 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 85.

    Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 86.

    Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 87.

    Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 88.

    Hecker, N. & Hiller, M. A genome alignment of 120 mammals highlights ultraconserved element variability and placenta-associated enhancers. Gigascience 9, giz159 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 89.

    De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006).

    PubMed  PubMed Central  Google Scholar 

  • 90.

    Tabari, E. & Su, Z. PorthoMCL: parallel orthology prediction using MCL for the realm of massive genome availability. Big Data Anal. 2, 4 (2017).

    Google Scholar 

  • 91.

    Mi, H. et al. The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res. 33, D284–D288 (2005).

    CAS  Google Scholar 

  • 92.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  Google Scholar 

  • 93.

    Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 94.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 95.

    Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R. Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 96.

    Devanna, P. et al. Next-gen sequencing identifies non-coding variation disrupting miRNA-binding sites in neurological disorders. Mol. Psychiatry 23, 1375–1384 (2018).

    CAS  Google Scholar 

  • 97.

    Devanna, P., van de Vorst, M., Pfundt, R., Gilissen, C. & Vernes, S. C. Genome-wide investigation of an ID cohort reveals de novo 3′ UTR variants affecting gene expression. Hum. Genet. 137, 717–721 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Let's block ads! (Why?)



    "six" - Google News
    July 22, 2020 at 10:04PM
    https://ift.tt/2EapLvl

    Six reference-quality genomes reveal evolution of bat adaptations - Nature.com
    "six" - Google News
    https://ift.tt/3dcBbL9
    https://ift.tt/2Wis8la

    No comments:

    Post a Comment

    Search

    Featured Post

    Granblue Fantasy: Relink's Demo Will Make a Believer Out of You - Kotaku

    depolitikblog.blogspot.com Before multiple friends of mine went out of their way to sing the praises of Granblue Fantasy: Relink to ...

    Postingan Populer